Rare event of histone demethylation can initiate singular gene expression of olfactory receptors.
نویسندگان
چکیده
Mammals sense odors through the gene family of olfactory receptors (ORs). Despite the enormous number of OR genes (∼1,400 in mouse), each olfactory sensory neuron expresses one, and only one, of them. In neurobiology, it remains a long-standing mystery how this singularity can be achieved despite intrinsic stochasticity of gene expression. Recent experiments showed an epigenetic mechanism for maintaining singular OR expression: Once any ORs are activated, their expression inhibits further OR activation by down-regulating a histone demethylase Lsd1 (also known as Aof2 or Kdm1a), an enzyme required for the removal of the repressive histone marker H3K9me3 on OR genes. However, it remains unclear at a quantitative level how singularity can be initiated in the first place. In particular, does a simple activation/feedback scheme suffice to generate singularity? Here we show theoretically that rare events of histone demethylation can indeed produce robust singularity by separating two timescales: slow OR activation by stepwise H3K9me3 demethylation, and fast feedback to turn off Lsd1. Given a typical 1-h response of transcriptional feedback, to achieve the observed extent of singularity (only 2% of neurons express more than one ORs), we predict that OR activation must be as slow as 5–10 d-a timescale compatible with experiments. Our model further suggests H3K9me3-to-H3K9me2 demethylation as an additional rate-limiting step responsible for OR singularity. Our conclusions may be generally applicable to other systems where monoallelic expression is desired, and provide guidelines for the design of a synthetic system of singular expression.
منابع مشابه
Control of proinflammatory gene programs by regulated trimethylation and demethylation of histone H4K20.
Regulation of genes that initiate and amplify inflammatory programs of gene expression is achieved by signal-dependent exchange of coregulator complexes that function to read, write, and erase specific histone modifications linked to transcriptional activation or repression. Here, we provide evidence for the role of trimethylated histone H4 lysine 20 (H4K20me3) as a repression checkpoint that r...
متن کاملLoss of estrogen receptor signaling triggers epigenetic silencing of downstream targets in breast cancer.
Alterations in histones, chromatin-related proteins, and DNA methylation contribute to transcriptional silencing in cancer, but the sequence of these molecular events is not well understood. Here we demonstrate that on disruption of estrogen receptor (ER) alpha signaling by small interfering RNA, polycomb repressors and histone deacetylases are recruited to initiate stable repression of the pro...
متن کاملP-209: Decreased Expression of Histone Acetyltransferase CDY1 Gene in Testis Tissue May Lead to Decreased Expression of Transition Protein (TNP) and Protamine (PRM) Genes,Causing Male Infertility
Background: Infertility is a complex medical problem. About 15% of couples are infertile, and male infertility being involved in roughly 50% of the cases. Among these, many cases are associated with a severe impairment of spermatogenesis. During the last stage of spermatogenesis (spermiogenesis), sperm chromatin endures complex modifications in which histones are lost and depositioned with tran...
متن کاملP-202: Reduced Expression of JMJD1A Histone Demethylase Gene in Testis Tissues of Infertile Men Referred to Royan Institute
Background: Epigenetic modifications are involved in different cellular processes through regulating chromatin dynamics. histone methylation is an important modification that can be dynamically regulated by histone methyltransferase and histone demethylase enzymes. JMJD1A (also known as JHDM2A and KDM3A) is a histone demethylase specific for H3K9me2/me1. JMJD1A is a key epigenetic regulator tha...
متن کاملAn Epigenetic Trap Stabilizes Singular Olfactory Receptor Expression
The molecular mechanisms regulating olfactory receptor (OR) expression in the mammalian nose are not yet understood. Here, we identify the transient expression of histone demethylase LSD1 and the OR-dependent expression of adenylyl cyclase 3 (Adcy3) as requirements for initiation and stabilization of OR expression. As a transcriptional coactivator, LSD1 is necessary for desilencing and initiati...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 110 52 شماره
صفحات -
تاریخ انتشار 2013